Robust Image and Video Dehazing with Visual Artifact Suppression via Gradient Residual Minimization

نویسندگان

  • Chen Chen
  • Minh N. Do
  • Jue Wang
چکیده

Most existing image dehazing methods tend to boost local image contrast for regions with heavy haze. Without special treatment, these methods may significantly amplify existing image artifacts such as noise, color aliasing and blocking, which are mostly invisible in the input images but are visually intruding in the results. This is especially the case for low quality cellphone shots or compressed video frames. The recent work of Li et al. [16] addresses blocking artifacts for dehazing, but is insufficient to handle other artifacts. In this paper, we propose a new method for reliable suppression of different types of visual artifacts in image and video dehazing. Our method makes contributions in both the haze estimation step and the image recovery step. Firstly, an imageguided, depth-edge-aware smoothing algorithm is proposed to refine the initial atmosphere transmission map generated by local priors. In the image recovery process, we propose Gradient Residual Minimization (GRM) for jointly recovering the haze-free image while explicitly minimizing possible visual artifacts in it. Our evaluation suggests that the proposed method can generate results with much less visual artifacts than previous approaches for lower quality inputs such as compressed video clips.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Transmission Compensation via Human Visual System for Robust Single Image Dehazing

Dark channel prior has been used widely in single image haze removal because of its simple implementation and satisfactory performance. However, it often suffers from halo artifacts or noise amplification, over-dark and over-saturation looking in some images containing heavy fog or large sky patches where dark channel prior is not established. To resolve these problems, this paper proposes a ro...

متن کامل

Adaptive Image Dehazing via Improving Dark Channel Prior

The dark channel prior (DCP) technique is an effective method to enhance hazy images. Dark channel is an image with the same size as the hazy image which represents the haze severity in different places of the image. The DCP method suffers from two problems: it is incapable for removing haze from smooth regions, causing blocking effects on these areas; it cannot properly reduce a haze with a no...

متن کامل

Contrast enhancement based single image dehazing VIA TV-l1 minimization

In this paper, we propose a general algorithm to removing haze from single images using total variation minimization. Our approach stems from two simple yet fundamental observations about haze-free images and the haze itself. First, clear-day images usually have stronger contrast than images plagued by bad weather; and second, the variations in natural atmospheric veil, which highly depends on ...

متن کامل

Optimized contrast enhancement for real-time image and video dehazing

A fast and optimized dehazing algorithm for hazy images and videos is proposed in this work. Based on the observation that a hazy image exhibits low contrast in general, we restore the hazy image by enhancing its contrast. However, the overcompensation of the degraded contrast may truncate pixel values and cause information loss. Therefore, we formulate a cost function that consists of the cont...

متن کامل

Improved total variation minimization method for compressive sensing by intra-prediction

Total variation (TV) minimization algorithms are often used to recover sparse signals or images in the compressive sensing (CS). But the use of TV solvers often suffers from undesirable staircase effect. To reduce this effect, this paper presents an improved TV minimization method for block-based CS by intra-prediction. The new method conducts intra-prediction block by block in the CS reconstru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016